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1. Introduction. Classical error estimates for the Gauss quadrature formula using 
derivatives can be used, but they are not of great practical value since the deriva- 
tives are not usually available. Davis and Rabinowitz [1] give a more convenient 
method for obtaining an upper bound for the error in the quadrature of analytic 
functions. McNamee [2] has discussed complex-variable methods for obtaining 
upper bounds for the errors of the Gaussian quadratures applied to analytic func- 
tions, and Barrett [3] has discussed their convergence. 

The error of the n-point Gauss quadrature depends on n and also on the func- 
tion to be integrated. The object of the present paper is to obtain asymptotic es- 
timates for the error of the Gauss quadrature formula, for large n, according to the 
nature of the integrand f(x). The analysis also brings out the effect of the nature 
of f(z) on the rate of convergence of the Gauss quadrature formula. 

2. The Gauss Quadrature Formula. Let C be a closed contour in the complex 
plane enclosing the interval [- 1, 1] in its interior and let f(z) be regular within C 
and continuous in the closure of C. Denoting the zeros of the Legendre polynomial 
Pn(x) defined on [-1, 1] by {Xk I ln, on applying the residue theorem to the contour 
integral 

(1) 1 | (z)dz 
2Xt c (z - X)Pn (Z) 

we get 

(2) f(X) E P (x) f(Xk) + 1 f f(z)Pn(x)dz 
k=1 (X - Xk)Pn'(Xk) 2wi C (z - x)Pn(z) 

Integrating both sides with respect to x over [-1, 1], we get 

f} ~~~n 
(3) f f(X)dx = E Xkf(Xk) + En(f). 

-1 ksl 

This is the Gaussian integration rule of order n over the interval [-1, 1] with 
weights Xk = [Pn'(Xk)L 1 l Pn(x)dx/(x - Xk). The abscissas Xk and weights Xk have 
been tabulated extensively in [4], [5]. 

The error of the Gauss quadrature formula is given by 

(4) En(f) =f p(Z) (z)dz 

wvhere Q.(z) f1 P.(x)dx/(z - x) is the Legendre function of the second kind. 
See also Davis [6, p. 361]. 
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3. An Asymptotic Formula for En(f). We now put the formula for the error in an 
asymptotic form for large n. An asymptotic expression for Qn(z)/Pn(z), for large n, 
is given (Barrett [3]) by 

(5) PX(Z) (Z i (Z2 - l)1/2)2n+1 

where the sign is chosen so that Iz =t (z2 - 1)1 /21 > 1, and (5) is valid in the z- 
plane with the interval [-1, 1] removed. Observe that Qn(-z)/Pn(-z) - 

-Qn (z) /Pn (z) . 
Substituting (5) in (4) we obtain an asymptotic formula for the error 

(6) En(f) -i 2 1/2)2 
c(Z+(Z2 - 1)1/)2nl+ 

valid for large n. In the following we shall be concerned with the estimation of 
the contour integral in (6) according to the behaviour of f(z). 

A similar integral has been estimated, for large n, depending on the nature of 
f(z), in connection with the asymptotic estimation of the coefficients in the 
Chebyshev series expansion of a function, by Elliott [7] and by Elliott and Szekeres 
[8]. 

3.1. Entire Functions. In this section we consider the estimation of the error 
En(f) of the Gauss quadrature applied to entire functions. 

Observe that for entire f(z), the contour in (6) can be displaced freely in the 
plane, provided only that it never crosses the branch points z = ? 1. We can there- 
fore use the method of steepest descents to estimate En(J), when the contour is 
deformed to pass through the saddle points of the integrand. 

As in [8], we write the integrand in (6) as exp (4+(z)) where 

At'(z) = log f(z) - (2n + 1) log (Z + (Z2 1)1/2). 

Assuming that the main contribution to the contour integral, for large n, comes 
from the portion of the integral passing through a saddle point (where A't(v) = 0), 
we obtain the estimate of error, 

(7) En (f ) ~-i(27r) l/2aj l "(r)1I-1/2 exp 6()) 

where fI = 1 and arg a ir/2 - I arg 'I"(r). 
For example, for the function exp (x), (7) gives the error estimate, 

(27r) 1/2 (2n + 1) exp (r) (8) ~~~~~En(f) 1/2 2 W 1/2 2nl 

where v-(1 + (2n + 1)2)1/2. 

TABLE 1* 

n Estimated En Actual E. 

5 8.698 (-10) 8.248 (-10) 
6 1.641 (-12) 1.568 (-12) 

* Values in the parentheses indicate the power of 10 by which the tabulated values should be 
multiplied. 
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TABLE la 

n Estimated En Actual En Upper bound 
for lEnf 

5 6.387 (-7) 6.041 (-7) 4.0 (-6) 
6 2.195 (-9) 2.094 (-9) 2.0 (-8) 
7 4.955 (-12) 4.758 (-12) 4.0 (-11) 

A comparison of the estimated with the actual error for exp (x) is given in Table 1. 
As a second example, consider f(x) = x3 exp (x). Table la gives a comparison of 
the actual error for this function with that estimated from (7), and with the upper 
bounds for En obtained by McNamee [2] (last column). 

3.2. Function with Pole. Let ?, (p > 1) designate the ellipse whose foci are at 
z = i1 and whose semi-axes are respectively 2(p + p-1) and (p -p-). 

Suppose that f(z) has a pole of order k at z = zo, say f(z) = Ak/(z - ZO)k where 
Ak iS constant. In (6), let the contour be selected to be an ellipse c, described in 
the positive sense and enclosing zO in its interior, joined by a cross-cut (not inter- 
secting the interval [- 1, 1]) to a small circle with centre at zo, described in the 
negative sense. Now, let p -X o and let the radius of the small circle tend to zero. 
Assuming that f(z) is such that the integral around c, tends to zero as p -+ cx, for 
large n, from (6) we obtain 

(9) En(f) -27r (k- 1)! dZk1 [(Z + (Z2 _ 1)1/2)2n+l]_ ZZo 

An estimate of error for f(z) having a simple pole at z = zo follows immediately 
from (9). In case f(z) has simple poles away from the real axis, say at zo and 2o 
with residues Ao and 3o, we easily obtain the estimate 

(10) En (f) -47r Re [( + (Z02 1)1/2)2n+11 

See also Barrett [3, p. 273]. As an example, consider the function f(x) (9X2 + 1)-' 
for which (10) gives the error estimate 

3 2n+1 

(11) En~ (-1)n27r[-1 + (10)1/22 

TABLE 2 

n Estimated En Actual En 

5 -5.714 (-2) -5.787 (-2) 
6 2.968 (-2) 2.891 (-2) 
7 -1.542 (-2) -1.537 (-2) 
8 8.011 (-3) 7.904 (-3) 
9 -4.161 (-3) -4.134 (-3) 

10 2.162 (-3) 2.143 (-3) 
11 - 1.123 (-3) - 1.116 (-3) 
12 5.834 (-4) 5.794 (-4) 
16 4.249 (-5) 4.227 (-5)) 
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The estimated error is compared in Table 2 with the actual error. 
To estimate (9) for k > 2, on performing one differentiation, it can be put in 

the form 

(12) En(f) , 27r(2n + 1) (Ak/(k - )!)g(k-2)(zo) 

where we have put 

(13) g(z) = 2 1/2 2 1/2 

(Z -1)2 (z + (Z2 -1)2)2nl?1 

Substituting for g(k-2)(z) from [7, p. 278], we find when Re zo > 1 and subject to 
the condition that Izo/(zo2 - 1)1/2 - 11 < 2 

(14) En(<) ~ 27r Ak (-1)k(2n + k- 1)! (14) E~~(f) 
n)! (ko - 1)! _z2-1 

k)2z+(0 
1) 1/2) 2n1 

and in case Re zo < -1, the estimate (14) is to be multiplied by -1. 
For iRe zol < 1, again substituting for g(k-2)(zo) from [7, p. 279], we obtain 

Ak (_1)keT(n?1/2)i(n+l-1) 
(1) En() 27r (2n + 1) -kAkl) (-r (2n + k -1)! E~(f)~? 2r(2n 

1)k - 1)! (z0 2 
_ 1)(k1l)/2 

(15)/ 
p-(2n+l) 2 Z 1 

X k-2 \(zo2 _ 1) /2 

where the upper or the lower sign is taken according as Im zo > 0, and Pk-(2n+l) is 
the Legendre function of the first kind. 

3.3. Function with Singularity on the Real Axis. First, we consider the case of a 
function having a branch point on the real axis. 

Assume that f(z) = (c - z)Og(z), (c > 1) where q5 is nonintegral and g(z) is 
regular at z = c. To estimate the contour integral in (6), we choose the contour as 
in Section 3.2 except that the cross-cut now encloses the part of the real axis be- 
tween the small circle, centered at z = c, and the ellipse. We assume again that 
the integral in (6) along c, tends to zero as p -> o; and 0 > -1 so that the in- 
tegral around the small circle tends to zero. In the limit, therefore, the only con- 
tributions to the contour integral in (6) come from the line segments of the cross- 
cut, which combine to give 

(16) En(f) -2 sin (ir4) lim f c- x+lg(x)dx 
a--+c (X + (X2 - 1)1/2)2nfl? 

The integral in (16) can be estimated as in [7, p. 282]. Assuming that g(z) is such 
that, for large n, the main contribution to the integral comes from values close to 
z = c, we obtain the estimate 

(17) En(f) -2 sin (7r4)(c2-1)(??1)/2 g(c)r(o + 1) 
(2n + 1)0+1(c + (C2 _ 1)1/2)2n?l 

In case f(z) has a branch point at z = -c (c > 1), the estimate (20) holds with 
the sign changed. 

The above analysis can be used to obtain estimates of error for a function 
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regular everywhere except at the end-points of the interval of integration. Let 
f(z) = (1 - z)+g(z). Since f(z) has to be bounded at z = 1, we must have q > 0. 
Under similar assumptions as above, we obtain in this case the estimate 

E, ~~21" sin (ir4) g(1) r(0+2 ( 18 ) E~(f) ~ - 

(2n + 1 ) 2(0+?1) 

For f(z) with only singularity of the above type at z = -1, the estimate (21) 
holds with the sign changed. 

As an illustration, consider the function (1 + x)1 /2, for which (21) gives the 
error estimate 

(19) En 
2 

( /2 V 3 

The estimated and the actual errors in the Gauss quadrature formula for the func- 
tion (1 + x)"12 are compared in Table 3. 

TABLE 3 

n Estimated En Actual En 

5 2.125 (-3) 1.782 (-3) 
6 1.287 (-3) 1.074 (-3) 
7 8.381 (-4) 6.970 (-4) 
8 5.757 (-4) 4.778 (-4) 
9 4.066 (-4) 3.417 (-4) 

10 3.054 (-4) 2.528 (-4) 
11 2.325 (-4) 1.923 (-4) 
12 1.810 (-4) 1.496 (-4) 
16 6.906 (-5) 6.495 (-5) 

Next, error estimates for a function having a logarithmic singularity on the real 
axis can also be obtained by the above method. Let f(z) = g(z) log (c - z) (c > 1), 
and let f(z) and g(z) satisfy the same conditions as above. Since the integral around 
the small circle tends to zero as the radius of the circle tends to zero, the contribu- 
tions from the cross-cut in this case combine to give 

ai g (x) dx 
(20) E,f 2ir lmc (x + (X2 - 1)1/2)2f+l 

Calculating the integral as above, we obtain the estimate 

(21 ) En (f ) /___- 2rg (c) (C2 _ 1 ) 1/2 (21) E~~~(f) - ~(2n + 1) (c + (c 2 - 1) 1/2)2n? 1 

In case c lies on the negative real axis (c < -1), the estimate (21) holds with the 
sign changed. As an example, consider f(x) = log (1.1 + x) for which (21) gives 
the error estimate 

(22) En, 
~ 

( 22 ) (0.21 )1/2 

(2n ? 1)(I.1I + (0.21)1/ )2nl+1 
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Table 4 gives a comparison of the estimated with the actual error for this function. 

TABLE 4 

n Estimated En Actual E. 

5 1.991 (-3) 2.212 (-3) 
6 6.938 (-4) 7.591 (-4) 
7 2.476 (-4) 2.678 (-4) 
8 8.998 (-5) 9.647 (-5) 
9 3.316 (-5) 3.529 (-5) 

10 1.235 (-5) 1.307 (-5) 
11 4.646 (-6) 4.893 (-6) 
12 1.760 (-6) 1.846 (-6) 
16 3.836 (-8) 3.977 (-8) 

4. Extension to the Gauss-Jacobi Quadratures. Finally, we indicate that the 
above methods can be used to obtain asymptotic error estimates for the Gauss- 
Jacobi quadratures. The Gauss-Jacobi quadrature formula 

rl n 
(23) ] (1 - x) (1 + x) f(x)dx = E Xkf(Xk) + En(f) 

k-1 

has been described in Barrett [3], and an asymptotic formula for the error is given 
in the form 

(24) En(f) - -i (z - 1)a(z + 1) + f 
/(z 

d 
c ~~~~(Z + (Z2 - 1)1/2)(2n+a+0+1) 

Estimates for En(f) can now be obtained from (24). 

5. Conclusion. In this paper we have obtained estimates for Gaussian quadrature 
errors for large n. The form of the estimate depends upon the nature of the in- 
tegrand f(z). The analysis also brings out the effect of the nature of f(z) on the rate 
of convergence of the Gaussian quadrature. For instance, Eq. (19) indicates that 
Gaussian integration can be relatively slow in convergence. Even entire functions 
can behave quite wildly and the behaviour of the function in the neighbourhood 
of saddle points may be quite inadequate as an estimate of the function over a 
domain of the complex plane. 
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